世娱网
您的当前位置:首页第十九章_一次函数复习题

第十九章_一次函数复习题

来源:世娱网


1.(2013•衡阳)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;

(1)档用地阿亮是180千瓦时时,电费是 元; (2)第二档的用电量范围是 ; (3)“基本电价”是 元/千瓦时;

(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?

bk0)的图象如图所示,当y0时,x的取值范围是( ) 2.ykx(A.x0 B.x0 C.x2 D.x2

3.(2013,永州).已知一次函数ykxb的图象经过A(1,1),B(1,3)两点,则k 0

(填“”或“”)

4.(2013,成都)已知点(3,5)在直线yaxb(a,b为常数,且a0)上,则的值为_____.

ab55.(2013•广安)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格. 空调 彩电 5400 3500 进价(元/台) 6100 3900 售价(元/台) 设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元. (1)试写出y与x的函数关系式; (2)商场有哪几种进货方案可供选择?

(3)选择哪种进货方案,商场获利最大?最大利润是多少元?

6. (2013•眉山)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的可能是

y y y y O A

x O B

x O C

x D

O x

7.(2013•内江)某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示. X 50 60 90 120 y 40 38 32 26 (1)求y关于x的函数解析式; (2)后来在修建的过程中计划发生改变,决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.

8.(2013•遂宁)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.

(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;

(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由. 9.(2013•资阳)在一次函数y(2k)x1中,y随x的增大而增大,则k的取值范围为_______. 10.(2013鞍山)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第 象限.

11.(2013•鄂州)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题: (1)轿车到达乙地后,货车距乙地多少千米? (2)求线段CD对应的函数解析式.

(3)轿车到达乙地后,马上沿原路以CD段速度返回,求货车从甲地出发后多长时间再与轿车相遇(结果精确到0.01).

(2013•黄石)一辆客车从甲地开往乙地,

一辆出租车从乙地开往甲地,两车同

时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如右图所示: (1)根据图像,直接写出y1、y2关

O 6 10 x(小时)

600 y(千米) 出租车 客车 于x的函数关系式;

(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;

(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出

租车恰好进入B加油站,求A加油站离甲地的距离.

解析:

解:(1)y160x (0≤x10)

····································· (2分) y2100x600 (0≤x6) ·

15160x600(0x)415(x6) (2)∴S160x600 460x(6x10)(3)由题意得:S200

①当0x155时,160x600200 ∴x 42∴y160x150(km)

②当

15x6时,160x600200 ∴x5 4

∴y160x300(km)

③当6x10时,60x360(舍) ································ (3分)

12.(2013•荆州)体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是 进球数 人数 A.y=x+9与y=

0 1 1 5 2 x 3 y 4 3 5 2 222222x+ B. y=-x+9与y=x+ 3333222222C. y=-x+9与y=-x+ D. y=x+9与y=-x+

333313.(2013•荆州)某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟

踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.

(1)直接写出y与x之间的函数关系式;

(2)分别求出第10天和第15天的销售金额;

(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?

y(千克)30y(千克)10801520x(天)01020x(天)

图甲 图乙

14.(2013•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是( )

A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=﹣8t+25 途中加油21升 B. 汽车加油后还可行驶4小时 C.

D.汽车到达乙地时油箱中还余油6升 15.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示: 类型 价格 进价(元/盏) 售价(元/盏) 30 45 A型 50 70 B型 (1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?

(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?

16.(2013•武汉)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙

车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y千米,y关于x的函数关系如图所示,则甲车的速度

是 米/秒.

y/(米)900D500ABO100第14题图C200220x/(秒)

17.(2013•武汉)直线y2xb经过点(3,5),则关于x的不等式2xb≥0的解集是——.

18.(2013•襄阳)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:

A超市:所有商品均打九折(按标价的90%)销售; B超市:买一副羽毛球拍送2个羽毛球.

设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:

(1)分别写出yA、yB与x之间的关系式;

(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?

(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.

19.(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起 分钟该容器内的水恰好放完.

20.(2013•宜昌)A,B两地相距1100米,甲从A地出发,乙从B地出发,相向而行,甲比乙先出发2分钟,乙出发7分钟后与甲相遇.设甲、乙两人相距y米,甲行进时间为t分钟,y与t之间的函数关系式如图所示.请你结合图象探究:

(1)甲的行进速度为每分钟 米, m= 分钟; (2)求直线PQ对应的函数表达式; (3)求乙的行进速度.

21.(2013•莆田)如图,一次函数y=(m﹣2)x﹣1的图象经过二、三、四象限,则m的取值范围是( )

A.m>0 B. m<0 C. m>2 D. m<2 22.(2013•厦门)一个有进水管与出水管的容器,

从某时刻开始的3分内只进水不出水,在随后的 9分内既进水又出水,每分的进水量和出水量都是 常数.容器内的水量y(单位:升)与时间 x(单位:分)之间的关系如图10所示.

当容器内的水量大于5升时,求时间x的取值范围.

23.(2013•长春)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右

平移后得到△O′A′B′,点A的对应点在直线y的距离为 (A)

3x上一点,则点B与其对应点B′间49. (B)3. (C)4. (D)5 . 4

(2013•长春)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设

路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时.

(1)分别求线段BC、DE所在直线对应的函数关系式. (2)当甲队清理完路面时,求乙队铺设完的路面长.

(第21题)

(1)设线段BC所在直线对应的函数关系式为y=k1xb1. ∵图象经过(3,0)、(5,50),

3k1b10,k125,解得 ∴5k1b150.b175.

∴线段BC所在直线对应的函数关系式为y=25x75. 设线段DE所在直线对应的函数关系式为y=k2xb2. ∵乙队按停工前的工作效率继续工作, ∴k2=25.

∵图象经过(6.5,50),

∴6.525b2=50,解得b2=112.5.

∴线段DE所在直线对应的函数关系式为y=25x112.5. (2)甲队每小时清理路面的长为 1005=20,

甲队清理完路面时,x=16020=8.

把x=8代入y=25x112.5,得y=258112.5=87.5.

答:当甲队清理完路面时,乙队铺设完的路面长为87.5米.

24.(2013•吉林省)甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲方与学校相距y甲(千米),乙与学校相离y乙(千米),甲离开学校的时间为t(分钟). y甲、y乙与x之间的函数图象如图所示,结合图象解答下列问题:

(1)电动车的速度为 千米/分钟; y千米(2)甲步行所用的时间为 分; 36(3)求乙返回到学校时,甲与学校相距多远?

18

0

x/分钟20 (第24题)

25.(2013•常州)已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k= 2 ,b= ﹣2 .

(2013•淮安)甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.

(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;

(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式; (3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.

考点:一 次函数的应用. 分析: 1)(设小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式为y1=k1x+b,由待定系数法根据图象就可以求出解析式; (2)先根据函数图象求出甲乙的速度,然后与追击问题就可以求出小亮追上小明的时间,就可以求出小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式; (3)先根据相遇问题建立方程就可以求出a值,10分钟甲、乙走的路程就是相距的距离,14分钟小明走的路程和小亮追到小明时的时间就可以补充完图象. 解答: :解(1)设小亮从乙地到甲地过程中y(与x(分钟)之间的函数关系式为y1=k1x+b,1米)由图象,得 , 解得:, ∴y1=﹣200x+2000; (2)由题意,得 小明的速度为:2000÷40=50米/分, 小亮的速度为:2000÷10=200米/分, ∴小亮从甲地追上小明的时间为24×50÷(200﹣50)=8分钟, ∴24分钟时两人的距离为:S=24×50=1200,32分钟时S=0, 设S与x之间的函数关系式为:S=kx+b,由题意,得 , 解得:, ∴S=﹣150x+4800; (3)由题意,得 a=2000÷(200+50)=8分钟, 当x=24时,S=1200 当x=32时,S=0. 故描出相应的点就可以补全图象.

如图: 点评:本 题时一道一次函数的综合试题,考查了待定系数法求一次函数的解析式的运用,追击问题与相遇问题在实际问题中的运用,描点法画函数图象的运用,解答时灵活运用路程、速度、时间之间的数量关系是关键. (2013•南通)如果正比例函数ykx的图象经过点(1,-2),那么k 的值等于 ▲ . (2013•南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题: (1)写出A、B两地直接的距离;

(2)求出点M的坐标,并解释该点坐标所表示的实际意义;

(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.

考点:一 次函数的应用. 分析:( 1)x=0时甲的y值即为A、B两地的距离; (2)根据图象求出甲、乙两人的速度,再利用相遇问题求出相遇时间,然后求出乙的路程即可得到点M的坐标以及实际意义; (3)分相遇前和相遇后两种情况求出x的值,再求出最后两人都到达B地前两人相距3千米的时间,然后写出两个取值范围即可. 解答:解 :(1)x=0时,甲距离B地30千米, 所以,A、B两地的距离为30千米; (2)由图可知,甲的速度:30÷2=15千米/时, 乙的速度:30÷1=30千米/时, 30÷(15+30)=,

×30=20千米, 所以,点M的坐标为(,20),表示小时后两车相遇,此时距离B地20千米; (3)设x小时时,甲、乙两人相距3km, ①若是相遇前,则15x+30x=30﹣3, 解得x=, ②若是相遇后,则15x+30x=30+3, 解得x=, ③若是到达B地前,则15x﹣30(x﹣1)=3, 解得x=, 所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系. 点评:本 题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,难点在于(3)要分情况讨论. 26.(2013•钦州)请写出一个图形经过一、三象限的正比例函数的解析式 y=x(答案不唯一). .

27.(2013•包头)如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为 .

28.(2013•包头)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.

(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;

(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?

(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?

29.(2013•遵义)P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,下列判断中,正确的是( ) A.B. y1>y2 y1<y2 C. 当x1<x2时,y1<D. 当x1<x2时,y1>y2 y2 30.(2013•天津)若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是 .

31.(2013菏泽)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过( ) A.第二、四象限 B.第一、二、三象限 C.第一、三象限 D.第二、三、四象限

32.(2013•青岛)如图,一个正比例函数图像与一次函数yx1的图像相交于点P,则这个正比例函数的表达式是____________

33.(2013泰安)把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )

A.1<m<7 B.3<m<4 C.m>1 D.m<4

34.(2013•威海)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是( )

A.乙摩托车的速度较快 经过0.3小时甲摩托车行驶到A,B两地的中点 B. 经过0.25小时两摩托车相遇 C. D.当乙摩托车到达A地时,甲摩托车距离A地km

35.(2013• 潍坊)一次函数y2xb中,当x1时,y<1;当x1时,y>0则b的取值范围是_____________.

36.(2013•湖州)某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.

(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是 元,小张应得的工资总额是 元,此时,小李种植水果 亩,小李应得的报酬是 元; (2)当10<n≤30时,求z与n之间的函数关系式; (3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.

37.(2013•宁波)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示: 甲 乙 2500 进价(元/部) 4000 3000 售价(元/部) 4300 该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元. (毛利润=(售价﹣进价)×销售量)

(1)该商场计划购进甲、乙两种手机各多少部?

(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.

y38.(2013•广州)一次函数y(m2)x1,若随x的增大而增大,则m的取值范围是

___________ .

(2013•珠海)已知,函数y=3x的图象经过点A(﹣1,y1),点B(﹣2,y2),则y1 _________

y2(填“>”“<”或“=”)

39.(2013•牡丹江)甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,下图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象.请结合图象回答下列问题:

(1)A、B两市的距离是 千米,甲到B市后, 小时乙到达B市;

(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;

(3)请直接写出甲车从B市往回返后再经过几小时两车相距15千米.

40.(2013•绥化)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题: (1)由于汽车发生故障,甲组在途中停留了 小时;

(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?

(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?

41.(2013•柳州)某游泳池有水4000m,先放水清洗池子.同时,工作人员记录放水的时

间x(单位:分钟)与池内水量y(单位:

m) 的对应变化的情况,如下表:

3

3

时间x(分钟) … 3水量y(m) … 10 3750 20 3500 30 3250 40 3000 … … 3

(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m? (2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.

42.(2013•铜仁)如图,直线y=kx+b交坐标轴于A(-2,0),B(0,3)两点,则不等式kx+b>0的解集是( )

A.x>3 B.-2<x<3 C.x<-2 D.x>-2

43.(2013•茂名)如图,三个正比例函数的图象分别对应表达式:①yax,②ybx,③ycx,将a,b,c从小到大排列并用“”连接为 .

因篇幅问题不能全部显示,请点此查看更多更全内容